LogoLogo
  • Blendr's Network
    • Executive Summary
  • Problem and Solution for Blendr - A Comprehensive Approach
  • Blendr's Decentralized Architecture
    • Blendr Compute Mesh (BCM)
    • BlendrChain
    • Blendr Token ($BLENDR)
    • BME | Native Token
    • Digital Asset Rights Ledger (DARL)
    • Node Engagement Protocol (NEP) and Creator Engagement Protocol (CEP)
    • Node Manager Selection
    • Task Scheduler Optimization active GPUs
    • Data Encryption and Integrity - Quantum-Resistant Encryption
    • Blockchain Smart Contract for Task Verification - Enhanced with Oracles
    • Reward Mechanism for GPU Contributors
    • Token Staking for Non-GPU Holders
    • Multi-Tier Pricing (MTP) Algorithm
    • Voting Power
    • Reputation Scoring System
    • Resource Allocation
    • Burn and Mint Equilibrium (BME)
    • Secure Transaction Protocol
    • Allocation Optimization
    • Dynamic Pricing Model
    • Incentive Mechanism (Burn and Mint Equilibrium - BME)
    • Token Staking
    • Reputation and Incentive Mechanism
    • GPU Selection and Task Allocation
    • CUDA + Blendr
    • Flow for User
  • In conclusion
Powered by GitBook
On this page
  1. Blendr's Decentralized Architecture

Task Scheduler Optimization active GPUs

PreviousNode Manager SelectionNextData Encryption and Integrity - Quantum-Resistant Encryption

Last updated 1 year ago

Incorporating the concept of Quality of Service (QoS) parameters, the task allocation problem can be reformulated to optimize both computation time and resource allocation efficiency, introducing a multi-objective optimization problem:

Minimize: Z=α∑j=1m∑i=1nXij⋅Tij+β∑i=1n(1−Ui)Z = \alpha \sum_{j=1}^{m} \sum_{i=1}^{n} X_{ij} \cdot T_{ij} + \beta \sum_{i=1}^{n} (1 - U_i) Z=α∑j=1m​∑i=1n​Xij​⋅Tij​+β∑i=1n​(1−Ui​)

Subject to:

 ∑j=1mXij⋅Dj≤Ci, ∀i \sum_{j=1}^{m} X_{ij} \cdot D_j \leq C_i, \ \forall i j=1∑m​Xij​⋅Dj​≤Ci​, ∀i
 ∑i=1nXij=1, ∀j \sum_{i=1}^{n} X_{ij} = 1, \ \forall j i=1∑n​Xij​=1, ∀j
Ui=∑j=1mXij⋅DjCi, ∀i U_i = \frac{\sum_{j=1}^{m} X_{ij} \cdot D_j}{C_i}, \ \forall i Ui​=Ci​∑j=1m​Xij​⋅Dj​​, ∀i 

Where:

  • UiU_iUi​represents the utilization rate of node iii,

  • α\alphaα and β\betaβ are coefficients balancing the importance between minimizing computation time and maximizing resource utilization.